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Note 

A General Method for an Accurate Evaluation of 

Exponential Integrals E,(x), x > O* 

The generalized exponential integrals occur very frequently as auxiliary functions 
in many branches of theoretical physics, such as in the molecular, solid state, and 
surface physics for studying the electronic structure and physical properties of a 
variety of systems, in nuclear physics for the theoretical analysis of neutron diffusion 
and in radiative transfer in astrophysics. Their accurate numerical evaluation is 
extremely important and, consequently, many numerical tables have been published 
in the past for various ranges of the relevant parameters with a limited accuracy [14]. 

The generalized exponential integrals are defined by 

E,(a) = Jrn (e-at/t”) dt. (1) 
1 

For II = 1, E,(a) becomes a well-known exponential integral of negative argument, 
--Ei(--or), which has also been the subject of tabulation by various authors [3, 41. 
Because of their importance the analytic properties of E,(a) have been discussed 
extensively in the literature [l, 2, 51. Some of these properties have been employed 
in calculating and tabulating E,(a). However, for the needs of the quantum chemists 
and molecular and solid state physicists [7] the accuracy and range of the available 
tables are often not adequate. We have also faced the same difficulty in developing 
a method for analytic evaluation of multicenter integrals using the expansion [7] 
of Slater orbitals from one center on to the other where one needs to evaluate the 
functions E,(a) very accurately. Besides this, since a single expression is not applicable 
for the calculation of II& for all ranges of n and (II, one is forced to use different 
expressions [l] in different ranges which creates a major difficulty in large-scale 
calculations of molecules and solids. To the knowledge of authors a simple method 
which can be employed for all ranges of n and 01 straightforwardly for the “machine” 
calculations is not yet known. The aim of this article is to point out a method suitable 
for the evaluation of E,(cu) for any value of 01 with a desired high accuracy. 

The expression connecting E,(a) (n > 1) and E,(or) is given by 

k=l 

which is easily obtained by means of the recurrence formula 

* Work performed under the auspices of the U.S. Energy Research and Development Administra- 
tion. 
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TABLE I 

Comparison of the Values (up to Nine Significant Figures) of (a + n) exp (a) E,(a) (Calculated from 
Eq. (2) for OL = 50) and the Corresponding Correct Values (Refs. [l, 41) 

n 

(a + 4 exp@> Ed4 
~- 

From Eq. (2) Correct valueb 

2 1.000 714 18 1.000 714 18 

3 1.001032 87 1 .001032 87 

4 1.001 328 62 1.001328 62 

5 1 .OOl 603 20 1.001 603 21 - 

6 1.001 858 28 1.001 858 25 

7 1.002 094 88 1.002 095 22 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

1.00231784 

1.002 505 02 

1.002 796 55 

1.002 452 01 

1.005 059 20 

0.994 699 40 

1.036 874 99 

0.882 958 98 

1.407 656 24 

-0.293 124 99 

4.871 562 49 

-9.918 749 99 

30.0 124 99 

1.002 315 46 

1.002 520 22 

1.002 710 62 

1.002 887 69 

1.003 052 39 

1.003 205 60 

1.003 348 10 

1.003 480 66 

1.003 603 94 

1.003 718 57 

1.003 825 15 

1.003 924 21 

1.004 016 23 

D The starting value of E,(50) in Eq. (2) is taken to be E,(SO) = 0.378 326 403 x 10ez3. The table 
demonstrates how the significant figure accuracy is lost in using Eq. (2) as n increases. The underlined 
figures are in error and for n = 17 and 19 even the sign comes out to be wrong in using Eq. (2). 

a From Refs. [l, 41. 
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Though Eq. (2) appears to be useful for computing E,(a) if one knows El(~) 
accurately, it turns out that there occurs cancellation errors in numerical evaluation 
of the right-hand side of Eq. (2). This is clear from Table I where we have listed values 
of E,(a) for 01 = 50 and n ranging from 2 to 20. In Table I the results obtained by 
using Eq. (2) with the starting value of E1 (50) = 0.378 326 402 955 04 x 1O-23 are 
compared with the correct results [l, 41. The underlined figures show where the errors 
have occurred. In fact the error builds up so fast that the results for n = 17 and 19 
are wrong even in sign. This point has been discussed extensively by Gautschi [9]. Our 
aim in this paper is to point out a method for evaluating &(a) correctly to the desired 
accuracy applicable for all values of CL. However, what one would really like to have 
is a similar expression for E,(a) for n > 1 so that the use of Eq. (2) would be obviated. 

For the calculation of E,(a) there exists a series expansion which is adequate 
[6, 81 only for small values of the argument 01(0 < CL < 4). For large (Y there remains 
a problem of calculating &(cx) accurately. Several authors [l, 4, IO-121 have suggested 
methods for evaluating E,(a) (and E,,(a) in general) for large arguments. However, 
these methods involve different expressions in different ranges and require complicat- 
ed calculational procedures. 

In order to obtain a general expression adequate for all values of 01 we fist recall 
that if 01--f 00, E;(a) + 0. Accordingly, we assume amsX to be a (particular) large value 
of cy and divide the region between OL and amax into m parts of widths CQ , 0~~ ... 01, 
such that 

amax = a + a1 + ap + 013 ..* + a, . (3) 

As a first step in obtaining the final expression we substitute Eq. (3) for OL in Eq. (1) 
and expand the exponential e*+. We have for E,(a), 

+ $ (n$;,, srn dt tn exp{-(olm,x - (Ye - .a. - a,)t}. 
-1 

Next we use in the above expression, in general, 

to obtain 

&(a) = lrn $ expf--(amax - QL$ - 01~ - . . . - %a) 

s m dt = 
1 

t exp{-(mYmax - ff2 - 01~ - ... - a,)t} 
(4) 
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Expanding exp(-aol,t) in Eq. (4) and integrating in the above manner and repeating 
the process, one obtains 

El(4 = El(%wJ + f 1 f ___ 
n=O (n + 1) t-o (n A t) !  I 

"+le-("+"J n+le-(u+ol+aJ 

2 + %y+l + (aa; 011 + c#+1 

n+le-(a+~,+rr,+...i-rr,) 

+ ... + (ci +zl + a2 f I . . . + a,)t+l . 

For simplicity we take equal intervals, (Ye = 01~ = ... = 01, = h which reduces 
Eq. (5) to 

El(a) = El(amax) + he-a (6) 

There are many advantages associated with the above expression. First, its conver- 
gence is in one’s control. One needs to take only h < ~11. Also, the smaller the h, the 
more convergent the expression becomes. Second, the terms in the expression are all 
positive which completely avoids the cancellation problems and hence the loss of 
significant figures. Third, the terms in Eq. (6) decrease fast with n and the series can 
be cut off at a low value of n. Moreover, heem appears as a factor outside the series 
which is very desirable since it generates the required order of magnitude of E,(a) 
leaving behind the summation as a correction part. Fourth, with the required signifi- 
cant figure accuracy of E,(a), amax can be chosen such that El(a,,) < E,(a) making 
E&max ) negligible compared with E,(a). This point is clear if one notes that &(lO) N 
IO-S, E,(50) c? 10-24, and E,(lOO) rv 10-45. An alternate and better way is to cal- 
culate El(olmax) (using Eq. (6) or otherwise) once and for all, and use it in Eq. (6) to 
calculate E,(a) for any value of 01. 

In molecular physics one usually requires E,(a) for 01 < 60. For actual calculations, 
assuming that the accuracy required is about 17 significant figures, one may take 
(Y max = 100 and very well neglect E,(lOO) in Eq. (6) to calculate E1 (60). This value 
of E,(60) may then be fixed as El(amax) in Eq. (6) to make it versatile for the calcula- 
tion of E,(a) for any (Y in molecular problems. For the required accuracy of the 
significant figures the summation over n in Eq. (6) can be cut off at a suitable value 
depending on the value of h taken. In our calculations (for 24 figure significant 
accuracy) we have taken n max < 30 and h close to a/10. In this case one does not 
require completion of the t and p summations for all their values since the terms 
decrease very fast due to the decreasing effect of the exponential factor and increasing 
effect of the denominator. The cutoff for the t and p summations can be made such 
that the product of all the factors in a term has the value less than IO-” where s is the 
number of figure accuracy required. The cutoff on the t and p summation makes 
expression (6) very efficient for calculations. 

Our calculations using Eq. (6) yield E,(O.5) = 0.559 773 594 776 16, E,(l) = 
0.219 383 934 395 52, E,(lO) = 0.415 696 892 968 53 x lo-“, E,(20) = 0.983 552 
529 064 98 x lo-lo, E,(50) = 0.378 326 402 955 04 x 10-23, E,(60) = 0.143 586 
756 568 12 x 10-2’. 
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For large-scale calculations Eq. (6) may be made very efficient and fast by first 
calculating accurately &(a) by the above method for some judiciously selected values 
of (Y (as, for example, 01 = 0.5, 1, 10, 20, 30, 40, 50, and 60). Now having these 
results readily available as &(ar,,) one calculates E,(or) for any value of LY by em- 
ploying the value of &(cx,,) corresponding to the amax closest to 01. As for example, 
in order to calculate E,(ol) for 1 < 01 < 10 one may use I&(10) as El(olmax) in Eq. (6). 
This procedure will further reduce the number of terms in n summation in Eq. (6) 
and hence reduce the calculational time. 

In summary, we have developed a formula for E,(a) (Eq. (6)) applicable for all 
values of 01 which, in conjunction with Eq. (2) is useful for theorists and particularly 
the molecular physicists and quantum chemists for accurate machine calculations of 
multicenter integrals in molecular problems. 

As mentioned before what one likes to have is a single expression for I&((Y) similar 
to E,(U) applicable for all ranges of n and CX. This will eliminate the use of Eq. (2) 
which suffers from the drawback of cancellation of significant figures and hence loss 
of accuracy. The research in this regard is in progress. 
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